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ABSTRACT

Long terminal repeat (LTR) retrotransposons and
endogenous retroviruses (ERVs) are transposable
elements in eukaryotic genomes well suited for
computational identification. De novo identification
tools determine the position of potential LTR
retrotransposon or ERV insertions in genomic
sequences. For further analysis, it is desirable to
obtain an annotation of the internal structure of
such candidates. This article presents LTRdigest,
a novel software tool for automated annotation of
internal features of putative LTR retrotransposons.
It uses local alignment and hidden Markov model-
based algorithms to detect retrotransposon-
associated protein domains as well as primer
binding sites and polypurine tracts. As an example,
we used LTRdigest results to identify 88 (near)
full-length ERVs in the chromosome 4 sequence of
Mus musculus, separating them from truncated
insertions and other repeats. Furthermore, we
propose a work flow for the use of LTRdigest in
de novo LTR retrotransposon classification and
perform an exemplary de novo analysis on the
Drosophila melanogaster genome as a proof of
concept. Using a new method solely based on the
annotations generated by LTRdigest, 518 potential
LTR retrotransposons were automatically assigned
to 62 candidate groups. Representative sequences
from 41 of these 62 groups were matched to
reference sequences with >80% global sequence
similarity.

INTRODUCTION

A considerable part of the genomes of higher eukaryotic
species are transposable elements (TE). In case of
vertebrates and plants, half or even higher percentages
of the genome are composed of TEs (1). According to

their transposition mechanism, TEs are divided in DNA
transposons and retrotransposons. The latter are further
subdivided by structural features (2). One of the well-
described retrotransposon subgroups are long terminal
repeat (LTR) retrotransposons, which are characterized
by LTR at their termini. In vertebrate species, the term
endogenous retroviruses (ERVs) is commonly used as a
synonym for LTR retrotransposons. Further classification
into families is wusually carried out by sequence
comparison.

Several effects of LTR retrotransposons/ERVs on host
genomes, e.g. on gene expression, alternative splicing and
implications in diseases were described in the last decade
[for a review see (3)]. In addition, several host defence
mechanisms against retrotransposition, e.g. epigenetic
silencing (4) and RNA interference were found [for a
review see (5)].

To identify LTR retrotransposons in genome sequences,
several software tools have been developed. These can be
divided into homology-based and de novo (or ab initio)
identification tools (6). Sequence homology-based tools,
like RepeatMasker (http://www.repeatmasker.org),
employ alignment algorithms for detecting sequence
regions similar to members of a library of known
repeats [e.g. Repbase Update (7)]. Such tools work best
on genomes in which repeats have already been identified,
as the sequences of a large number of TE families seem to
be species specific. Consequently, reusing library entries
from a particular species for detection in another species
may not lead to satisfactory results. Furthermore, the
primary focus of RepeatMasker is the masking of
sequences rather than producing annotations. For
example, RepeatMasker commonly produces several hits
for a single TE insertion which are mostly only linked by
the name of their Repbase reference entry, which can
make it difficult to identify individual full-length LTR
retrotransposon insertions from RepeatMasker results.
In contrast, typical de novo identification tools (8—12)
rely on the repetitive structure of the LTRs. In particular,
they identify (possibly degenerated) repeated sequence
pairs appearing in a certain distance from each other
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Figure 1. LTR retrotransposon model parameters. (A) Model of a single LTR retrotransposon used by LT Rharvest (12). (B) Additional internal
features considered in LTRdigest. The example depicts a PBS, a domain hit from the gag gene, three domain hits from the po/ gene and a PPT.
Of course, usually only a subset of the features is present in the region between the LTR pair. TSD, target site duplication; PR, protease; EN,

endonuclease.

(Figure 1A). These are interpreted as putative LTRs
of individual LTR retrotransposon insertions, called
‘candidates’ in this article.

However, LTRs are not the only relevant sequence
features in LTR retrotransposons and ERVs. Other
features located in their internal region (Figure 1B) are
important for successful retrotransposition. First,
polyproteins encoded in the internal genes gag and pol
contain catalytic domains providing, for example,
reverse transcriptase (RT), protease, ribonuclease H or
integrase functions (13). Furthermore, a ~8-22bp long
purine-rich region directly upstream of the inner 3’-LTR
boundary, called polypurine tract (PPT), is needed as a
primer for synthesis of the second (plus) DNA strand
after reverse transcription (14,15). A uracil-rich region,
called a U-box, is sometimes associated with this region
and function (16). Finally, a ~8-18bp long primer
binding site (PBS) motif near the inner 5-LTR
boundary is essential as a complementary hybridization
partner for a transfer RNA acting as a primer for the
RT encoded by the retrotransposon (14,17,18).

The dependence of a successful retrotransposition on
the presence of these features implies that in an active or
recently inactivated full-length LTR retrotransposon
(retaining all genes and regulatory sequences), all these
sequence features are expected to be found to some
degree. In case of ERVs, a remainder of the env gene
can be found in some elements (19).

Up until now, PBS and PPT search functionality is
implemented in the LTR_FINDER (9) and RetroTector
(20) software tools. LTR FINDER also contains a
simple search for a RT coding sequence. RetroTector
models the internal region as a chain of matches to a set
of motif sequences. Another software tool described in
(8) (from now on referred to as LTR_Rho) utilizes
profile hidden Markov models (pHMMs) of internal
protein domains to eliminate false positives from the
output set.

This article presents a new software tool, called
LTRdigest, implementing a combination of various
methods to detect and annotate internal features in LTR

retrotransposon candidates, e.g. derived from de novo
prediction programs. As another main contribution, we
describe a work flow using the result of an LTRdigest run
to perform a genome-wide de novo annotation and classifi-
cation of LTR retrotransposon insertions. Such analyses
produce a valuable genome-wide census of LTR retro-
transposons, including information about individual inser-
tions (e.g. number and positions of internal features). This
information can improve discrimination between full-
length, truncated or nested elements. Knowledge about
internal features can also assist in classification of de novo
predicted LTR retrotransposon candidates into families.

Recently, two programs were developed (21,22) that
classify de novo predicted TEs into the major classes of
DNA transposons, LTR retrotransposons and non-LTR
retrotransposons, respectively. A software like LT Rdigest
with the potential of identifying individual families of
de novo predicted LTR retrotransposons would assist the
task of in silico classification on a different level-—the
assignment of families.

In combination with filtering out truncated or nested
elements, family assignment will help in creating species-
specific libraries of representative LTR retrotransposon
sequences for each family in the organism. These libraries
are then ready to be used to identify solo LTRs or heavily
fragmented copies in a genome-wide masking effort.

We are not aware of any comparable previous tool
implementing a generic approach specific for fine-grained
LTR retrotransposon annotation.

MATERIALS AND METHODS

To reliably identify features inside an LTR retrotrans-
poson candidate, computational models for PPT, PBS
and protein domains, including their model parameters,
are required. Feature identification in this context means
obtaining the start and end positions of a particular
sequence feature inside each LTR retrotransposon candi-
date. Depending on the feature, one usually derives addi-
tional detailed information such as scores or binding
partners.
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Figure 2. Overview of the LTRdigest primer binding site model.
A putative primer binding site is represented by a high-scoring local
alignment of an area of length 2r+ 1 around the 5-LTR boundary and
a sequence from a tRNA library. Candidate alignments are scored
according to alignment length, offset and the distance of the aligned
substrings.

PBS detection

PBSs are identified by detecting regions complementary
to host tRNA. This process requires a tRNA sequence
library 7. Such a library can be predicted from the
genomic sequence with high accuracy, e.g. using
tRNAscan-SE (23). To model the complementarity of a
tRNA 7€ T and a putative PBS on the retrotransposon
sequence, the reverse complement of ¢ (to be supplied in
5'-3’ direction) is locally aligned to the genomic sequence.

The PBS is expected to start at close distance to the
inner 5-LTR boundary es in the LTR retrotransposon
candidate sequence u (Figure 1). Thus, the region to
align to the tRNAs can be restricted to an area around
this boundary. In our model, we use a user-specified radius
r which defines a search interval u[es—r . .. es + r] of length
2r + 1 around es (Figure 2). High-scoring local alignments
under conservative alignment scores (user-configurable
with default scores: 1 for a match, —2 for a mismatch,
—4 for an indel) are then computed by the Smith—
Waterman local alignment algorithm (24) and considered
as potential PBS candidates.

The start and end positions of the aligned substring 5" of
the retrotransposon sequence mark the location of
a putative PBS, whereas the respective coordinates for
the aligned tRNA substring ¢ mark its hybridizing
counterpart.

Furthermore, several distance-based constraints, such
as maximum allowed offsets and minimal alignment
length, are imposed on the alignment (Figure 2). All
alignments satisfying these constraints are then scored
based on their length, tRNA offset, PBS offset and
tRNA length (see Supplementary Data 1 for details).
The genomic substring involved in an alignment maximi-
zing this score is finally reported as a putative PBS for the
examined LTR retrotransposon candidate.

base composition
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Figure 3. Overview of the LTRdigest PPT model. An area of length
2r+1 around the 3-LTR boundary is partitioned with respect to
differences in base composition. Results are then subject to scoring
and length constraints to produce a final PPT hit.

PPT detection

The PPT is described by the base composition of the PPT
and U-box as well as by the length and exact position of
the PPT and U-box within a given LTR retrotransposon
candidate. These values are measured relative to the inner
3’-LTR boundaries (Figure 3).

To identify all sequence regions with a purine-rich base
composition, we implemented a HMM (25). In this base
composition HMM, characters of the DNA alphabet are
emitted according to region-specific base distributions
dependent on the set of states Q = {out, iny, iny, in,}. We
have chosen uniform transition probabilities of 0.05 and
additional parameters pr and p7, describing the expected
purine or thymine content in the PPT or U-box DNA
sequences. Their default values are given in Supplemen-
tary Data 1. In the PPT state in,, purines (4 and G) are
both emitted with probability pz/2. That is, in the model
there is a probability pr of observing a purine at a specific
position inside a PPT. T and C are both emitted with
probability (1 — pg)/2. Inside a U-box (state in,), we
define P to be the probability of observing a 7.
Consequently, the probability of observing one of the
other nucleotides is (1 — p7)/3. The state in, is introduced
to model stretches of N characters with a probability of 1,
like they appear in a previously masked or poorly deter-
mined region. In addition, a background (e.g. uniform)
probability distribution is used for the out state used to
model sequence regions that are neither inside a PPT nor
a U-box.

As the PPT must be located in the vicinity of the
3’-LTR, the sequence region of interest in this model
is again restricted to a substring of the whole LTR retro-
transposon sequence u. If the inner 3’-LTR boundary is
denoted b3 (Figure 1A), the radius r defines a sequence
region v = u[bs—r...bs + r] of length 2r+ 1. This region
v is then processed by the Viterbi algorithm (25), which
delivers the sequence of states w maximizing P(v,n), i.c.
the combined probability of v and n. From 7 we can
read potential PPT and U-box candidates as sequences
of states consisting of in, and in,, respectively.

Afterwards, candidates are filtered according to user-
defined minimum and maximum length constraints.
Each of the remaining PPT candidate is scored based on



the distance of its end position to the inner 3’-LTR
boundary (see Supplementary Data 1 for details). A can-
didate with maximum score is then reported as the most
likely PPT in the given LTR retrotransposon candidate
sequence. A possible immediately preceding U-box
candidate is reported as well.

Protein domain detection

pHMDMs (25,26) are a widely used probabilistic represen-
tation of protein domain families and can conveniently be
used to search for known domains in given protein
sequences. pHMMs are versatile: First, models are
publicly available, e.g. from the Pfam protein family
database (27). This database contains various prebuilt
models of protein domains associated with the process
of retrotransposition. Secondly, pHMMs can easily be
built from custom multiple sequence alignments. Due to
this flexibility, pHMMs were chosen to model protein
domains in LTR retrotransposon candidates. For the
analyses performed in this work, collections of protein
domain models associated with LTR retrotransposons
were compiled (Supplementary Data 1, Tables Bl and
B2). Given such a user-configurable set D of domain
models in HMMER format, LTRdigest searches for all
models in the translations of all six reading frames of a
LTR retrotransposon candidate sequence. In the case of
frame shifts, it is possible to obtain multiple partial hits
per protein domain occurring in different reading frames.
If more than one hit per domain model is found in a can-
didate, individual hits are combined using a chaining algo-
rithm adapted from the gene prediction software
GenomeThreader (28). This algorithm is able to find an
optimal sequence of individual hits representing the
model-sequence alignment best. Finally, the amino acid
start and end positions in the translated sequences of all
hits in the optimal chain below a user-defined E-value
threshold are mapped back to the respective coordinates
in the DNA sequence before they are reported.

Strand determination

For each individual PBS hit, PPT hit and protein domain
hit, we obtain a strand assignment for a set of hits from
the same candidate as follows: if all feature hits share a
common strand property, then this strand is taken as the
strand of the whole element. If individual hits have been
discovered on contradictory strands, they are ordered by
their evidence. We consider protein domain hits found in
the internal region to be the strongest evidence identifying
the orientation of a candidate. Thus, the protein domain
hit with the smallest E-value is chosen to determine the
direction of the whole candidate. All protein domain hits
in other directions are disregarded for strand assignment.
If no protein domain hits are present, the strand property
of a PBS hit determines the strand property of the whole
LTR retrotransposon candidate. If no PBS hit is present
either, the strand of the PPT hit is used. Finally, if no hits
exist, the strand property of the whole candidate remains
unchanged.

Nucleic Acids Research, 2009, Vol.37, No. 21 7005

De novo classification approach

Members of a family of LTR retrotransposons are
expected to share sequence identity as they are derived
from a common ancestor. In the context of de novo LTR
retrotransposon analysis, the task of family classification
addresses the problem of identifying how predicted LTR
retrotransposon insertions can be assigned to a number of
specific families. Another task is the identification of those
sequences which represent the whole family in an optimal
way (full-length and/or near full-length sequences). This
task is different from recognition of known families by
comparison to a database of reference sequences. The
approach presented here relies on the comparison of indi-
vidual internal features in predicted LTR retrotransposon
candidates and is, therefore, independent of reference
sequences from other organisms. Candidates with similar
feature sequences are treated as potential members of the
same family by combining evidence across all detected
features. This approach takes into account the homology
of internal protein-coding regions—independent of the
surrounding sequence context—as well as the family-
specific conservation of the LTR sequences and regulatory
signals like PBS or PPT.

Our approach to de novo family classification consists of
several steps which rely on the feature hits assigned to
substrings of an LTR retrotransposon candidate. Let C
be the set of LTR retrotransposon candidate sequences.
Let D be the set of protein domain models. Then
F = {ltrs, ltr3, pbs, ppt} U D is the set of possible features
assigned by LTRdigest. This assignment is represented
by a function ¢ such that ¢(c,f) = (i,j), if candidate
¢ has feature f in its substring c[i...j]. If ¢ does not
have feature f, we write ¢(c,f) = L, where L stands for
undefined. The first step of the classification consists of
clustering each set of substrings having the same feature.
That is, for each f'e F we perform a separate single linkage
clustering for all sequences c[i...j] such that ¢e C and
o(c,f)=(i,j) for some i,j. We use the dbcluster tool
from the Vmatch software (http://www.vmatch.de) to
perform the single linkage clustering. The clustering
parameters specifying under what conditions two
sequences go into the same cluster are calculated automat-
ically from the individual sequence sets. The respective
rules can be found in Supplementary Data 1.

For each ¢, e C and feF, we write (c,f)~(c,f) if
p(c.f) =(.j), o(c.f)=("j") for some iji'j" and
cli...j] and ([i’...j'] are in the same cluster with
respect to the single linkage clustering according to
feature f. Two candidates ¢,c¢’ € C are compatible if the
following holds:

(1) for all fe F, we have ¢(c,f) = L or ¢(c,f)= L or

(c.f)=(c.f), and
(ii) there is at least one f'€ F such that (¢,f)~(c,f).

That is, candidate sequences are pairwise compatible if
they share cluster memberships for at least one feature
(Figure 4). The compatibility relation on C splits this
set into subsets such that all pairs in each subset are
pairwise compatible. The subsets need not necessarily be
disjoint. We obtain unique memberships by discarding all
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Figure 4. Illustration of the candidate joining approach (using example
data). Each line depicts a single candidate. Maximal groups of compat-
ible candidates are indicated by colours (G;: blue, G5: red, G3: green).
Lines between cluster numbers indicate shared clusters among compat-
ible elements. Candidates marked as ambiguous (yellow) may possibly
be assigned to more than one group and are excluded from further
analyses. Candidates whose features do not belong to any cluster
are shown in grey. Most complete elements are drawn using stronger
colours. For two candidates from group G,, examples for the
compatibility requirements used in the joining criterion are shown.
Case (a): (c,ltr;)~(c,ltr3), case (b): ¢(c,rve) = (', rve) = L, case (c):
@(c,RVP) = L # ¢(c',RVP).

candidates that could not unambiguously be assigned to a
unique group. This cleaning step gives us disjoint groups
G1,G>,...,Gy, such that for all i, 1 <i < h all elements
in G; are pairwise compatible.

Afterwards, we determine which members of each group
could likely be complete representatives of their group.
As potentially good representatives, we prefer to select
candidates with the most frequently appearing feature
characteristics (see Supplementary Data 1 for details).

Implementation

The models and algorithms described above were
implemented in ANSI C based on the GenomeTools
genome analysis package (http://genometools.org), a
free, open source collection of bioinformatics software.
The GenomeTools package also contains the LT Rharvest
software (12) used to predict LTR retrotransposon
candidates.

As input, LTRdigest requires the sequence coordinates
of the LTR retrotransposon candidates to be provided in
GFF3 format with feature types conforming to the
Sequence Ontology [SO, (29)]. Each candidate is
represented by a line of type LTR_retrotransposon.
Additionally, two lines of type long_terminal_repeat are

target_site_duplication

long_terminal_repeat

primer_binding_site
{RNA: Ser-AGA, edist: 0, offet: 0

protein_match
PfamID: PFO0078.18, Name: RVT_1

protein_match

part_of

PfamID: PF00665.17, Name: rve

()
_RRitract
long_terminal_repeat

target_site_duplication

Figure 5. GFF3 annotation graph structure for a single LTR
retrotransposon candidate produced by LTRdigest. Additional nodes
(drawn in grey) for a PPT (RR_tract), a PBS (primer_binding_site)
and several protein domain matches (protein_match) are present. The
feature types conform to the SO (29) (in the mobile_genetic_element
subtree).

required for each candidate, representing the 5'- and
3’-LTR boundaries (Figure 5). The sequences that the
coordinates refer to must be provided as an encoded
sequence as delivered by the GenomeTools suffixerator
tool. All these preconditions are satisfied by the output
delivered by LTRharvest (12). Other tools producing
GFF3-formatted output can be used as well.

LTRdigest extends the annotation graph implicitly
given in the GFF3 file with new features. This is done
by applying the internal feature detection algorithms
described above to the sequence of each LTR
retrotransposon candidate. New nodes are added to the
annotation graph as features are detected. PPT features
are represented by nodes of the RR_tract SO type, PBS
features by the primer_binding site type and protein
domain matches by the protein_match type (Figure 5).

In addition to the extended annotation in GFF3 for-
mat (see Supplementary Data 3 and 5 for examples),
LTRdigest generates output files with a common, user-
defined name prefix. This naming scheme allows the user
to keep the output from several runs—for example, with
different parameter sets—in the same directory separate
from each other. First, sequences are written into
separate multiple-FASTA files for,

(i) whole LTR retrotransposon candidate sequences
(oriented in the most likely reading direction);
(ii) 5'- and 3-LTR sequences;
(iii) PPT and PBS sequences; and
(iv) concatenated coding DNA and amino acid
sequences for each protein domain recognized.

Each of the sequence files include one FASTA entry per
LTR retrotransposon candidate referenced by its source
sequence and start/end positions.

Secondly, the tool creates a text file describing the
particular LTRdigest run parameters and a tabulator-
separated text file in which each line contains detailed
information about all known and predicted features
in each LTR retrotransposon candidate, including all



features’ start and end positions and lengths. For PBS and
PPT features, motifs, offsets and scores are output as well.
It also contains a list of the pHMM IDs for the protein
domain hits, in order of appearance in the candidate’s
most likely reading direction. The tab-separated text file
is created in addition to the GFF3 output file because it
contains all relevant information in one file and can be
imported and conveniently examined by a user in a
standard spreadsheet application (see Supplementary
Data 4 for an example).

The pHMM search is done by the HMMER software
(http://hmmer janelia.org). This widely used software
package contains code to create, calibrate and search
pHMMs in DNA and amino acid sequences. As in the
hmmsearch tool from the HMMER suite, a search for
more than one domain model can be run simultaneously
using multiple concurrent operating system threads to
take advantage of parallelization in the increasingly
popular multi-core systems.

All detection algorithms and result structures,
including those calling HMMER code, are integrated
into GenomeTools by providing an object-oriented
application programming interface (API) which can
readily be wused by any software utilizing the
GenomeTools library.

The LTRdigest work flow is implemented as a command-
line tool callable via the main GenomeTools executable gt.
The LTRdigest tool can be compiled for any POSIX-
conforming UNIX-like operating system and has been
successfully tested on a variety of 32- and 64-bit platforms.
A GenomeTools source distribution containing LTRdigest
is available for download at http://www.zbh.uni-hamburg
.de/LTRdigest at the time of publication.

The classification approach described above is
implemented as a collection of Ruby scripts processing
the candidate sequence files and tabular output data as
created by LTRdigest. Additional external programs
such as Vmatch are called from the Ruby scripts.

RESULTS

In this section, we present example use cases for fine-
grained LTR retrotransposon candidate annotation using
LTRdigest. In particular, candidates predicted from
Drosophila  melanogaster and Mus musculus genomic
sequences were examined. For the D. melanogaster appli-
cation, additionally de novo classification of candidate
sequences into putative families is performed. Finally, the
results of this automated classification step are evaluated
by sequence-based comparison of representative sequences
to a reference data set.

L TRdigest annotation results for the D. melanogaster
genome

To exemplify the use of LTRdigest for annotation
purposes, we used the software to process LTR
retrotransposon candidates computationally derived
from the D. melanogaster release 5.8 genome. These
were predicted by LTRharvest using the parameters
given in Supplementary Data 1. While largely identical
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Table 1. Statistics for the LT Rharvest/LTRdigest runs on the
D. melanogaster release 5.8 genome

Chromosome 2L 2R 3L 3R 4 X =
Size (Mbp) 22.3 20 23 27 1.2 22 116
Candidates 108 161 182 138 11 113 713
In euchromatin 96 99 114 90 11 111 521
In heterochromatin 12 62 68 48 0 2192
With PBS 51 61 72 56 4 48 292
In euchromatin 48 44 50 42 4 47 235
In heterochromatin 3 17 22 14 0 1 57
With PPT 56 75 84 65 4 56 340
In euchromatin S1 46 56 45 4 55 257
In heterochromatin 5 29 28 20 0 1 83
With PBS +PPT 33 38 48 32 2 38 191
In euchromatin 31 26 36 25 2 37 157
In heterochromatin 2 12 12 7 0 1 34
With domains 99 145 166 126 6 94 636
In euchromatin 87 87 101 81 6 92 454
In heterochromatin 12 58 65 45 0 2 182

The first section shows chromosome sizes. The second section shows the
number of candidates per chromosome arm containing specific features.
The last column aggregates the values over all chromosome arms. The
term ‘in heterochromatin’ refers to candidates found in sequence files
labelled ‘Het’, ‘in euchromatin’ refers to sequence files not labelled ‘Het’.

to the parameters used in the work of Ellinghaus et al.
(12), the ‘overlap’ parameter was set to ‘no’ to disable
reporting of nested or overlapping candidates. A copy of
the genomic sequence in FASTA format was obtained
from the FlyBase (30) database, excluding mitochondrial
genome sequences and unplaced contig sequences
(given in the ‘U’ and ‘Uextra’ sequence files), but including
the heterochromatic sequences (labelled with ‘Het’).
LTRharvest  delivered 713 LTR  retrotransposon
candidates. Of these, 521 are located in the euchromatic
portion of the genome and 192 in the heterochromatic
region (Table 1). It should be noted that both full-length
and truncated LTR retrotransposon insertions are
reported as candidates.

The LTR retrotransposon candidates were annotated
using LTRdigest, which took ~12 min on an eight-core
Intel Xeon E5410 system (2.33 GHz, SuSE Linux). We
used default parameters except for the allowed tRNA
offset range used in the PBS detection (see Supplementary
Data 1, Table A2). This value was modified to address
binding sites farther into the tRNA molecule as the PBS
of some Drosophila LTR retrotransposons are known
not to bind exactly at the 3’-end of the respective tRNA
(14). To obtain a tRNA library, we processed the
D. melanogaster subset from the Genomic tRNA
Database (31) (304 sequences) into a non-redundant set
of 100 individual tRNA sequences. A set of 22 protein
domains specific or related to LTR retrotransposons and
retroviruses was selected from the Pfam database
(see Supplementary Data 1, Table B1).

The pHMM hits for protein domains were found in 636
candidates (454 in euchromatin, 182 in heterochromatin),
which account for 89% of all candidates. The majority
of the protein domain hits found in the candidates
show the RT-INT order of the RT and integrase
domains typical for retroelements of the gypsy superfamily
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(346 occurrences, see Supplementary Data 1, Table E1). In
41 candidates, an INT-RT domain hit order was observed,
indicating the possible presence of retrotransposons of
the copia superfamily, which show this characteristic
order (14). In some of the gypsy-like patterns, RT (145
occurrences) or integrase (51 occurrences) are missing,
whereas the other domains are present in the correct
order. As reviewed in (32), it is possible to distinguish
LTR retrotransposon candidates into superfamilies solely
on the basis of internal protein domain order. Thus, a first
superfamily classification on this basis is possible without
closer examination of the feature sequences themselves.

For 292 of 713 (41%) predicted candidates, a potential
PBS longer than 1l1bp was found. The five most
frequently occurring tRNA signatures were consistent
with known tRNAs binding to D. melanogaster
retrotransposons (14,33). Additional PBS locations com-
plementary to 10 additional tRNAs were found (see
Supplementary Data 1, Table F1). PBS lengths varied
between 11bp and 28 bp with a median of 15, whereas
the median distance of the PBS from the 5-LTR end
was 2 bp, varying between 0 bp and 5bp. Thus, PBS hits
were mostly well located at their expected positions,
allowing for slight LTR position inaccuracies. The
median length agreed with the length of known PBSs.

PPTs were present in 340 out of 713 candidate
sequences (48%). The shortest PPT was 8-bp long, the
longest was 30bp. The median PPT length was 13 bp.
While the distance of the predicted PPTs from the
3-LTR start varied between 0bp and 28 bp, the median
of 1bp indicated that they were mostly located at their
expected positions as well.

LTRdigest annotation results for M. musculus
chromosome 4

Chromosome 4 of the M. musculus genome was chosen
as an example to demonstrate the use of LT Rdigest for

efficient identification and annotation of full-length or
near full-length LTR retrotransposons in a mammalian
genome. This is done by annotation of the predicted
candidates using LTRdigest and subsequent filtering of
these candidates, retaining only those with a complete
protein domain set.

The chromosome 4 reference assembly file (build 37,
version 1, 158 MB) was downloaded from the NCBI
FTP server and candidates were predicted using
LTRharvest. Relaxed, unrestrictive default parameters
were used to ensure high sensitivity (Supplementary
Data 1, Table Al). Again, the ‘overlap’ option was set
to ‘no’ to disable reporting of nested or overlapping
candidates. LTRharvest processed the file in 7 min
(including enhanced suffix array construction) on an
Intel Xeon E5410 system (2.33 GHz, SuSE Linux).

In the next step, LTRdigest was used to annotate
internal features in these candidates. The M. musculus
tRNA set (433 sequences) from the Genomic tRNA
Database (31) was used. After removing multiple redun-
dant copies, 248 tRNA sequences remained. The set of
pHMMs to search for was extended with models of
known gag, pol and env domains from mammalian ERVs
and retroviruses, taken from Pfam. As a result, we
obtained a new set of 21 pHMMs (see Supplementary
Data 1, Table B2). The remaining parameters were left at
their default values (see Supplementary Data 1, Table A2).
The LTRdigest run on all 1711 LTRharvest candidates
took 43 min on the computer system mentioned above.

The pHMM hits to the set of 21 protein domain models
were found in 471 candidates. While 164 candidates
contained only a RT domain, there was a significant
number of candidates with a complete or near-complete
set of protein domains needed for retrotransposition. A
total of 88 candidates contained at least one pHMM hit
for each of the following features: a gag domain model, a
protease domain, a RT domain and an integrase domain.
Figure 6 shows an example for a particularly detailed
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Figure 6. Example annotation of an LTR retrotransposon candidate from M. musculus chromosome 4, positions, 71 995000-72 001 670. The image
was created using the AnnotationSketch software (42). The top track shows sequence-based LTR retrotransposon matches from Ensembl (34) release
54 (May 2009). LTR matches and internal region matches can only be linked by their Repbase feature identifier (‘RLTRI10C’ for the LTR matches
and ‘MMERVKI10C’ for internal region matches). The bottom track contains a representation of a hierarchical LTR retrotransposon annotation
graph, as reported by LT Rdigest, collapsed into a single track. The grey blocks at the end of the element represent the LTRs, whereas the coloured
elements in the middle represent protein domain hits. The orange and purple blocks at the inner LTR boundaries represent PBS and PPT features,
respectively. The image shows that LT Rdigest creates detailed, integrated annotation data for each full-length insertion, while a sequence-based
approach can result in fragmented matches which are not easily recognized as parts of a single full-length LTR retrotransposon.



annotation. These 88 candidates are very likely to
represent full-length representatives of their respective
families. An env domain hit was not required for
making a candidate (near) full-length because—in
contrast with infectious retroviruses—env genes are not
necessarily present in LTR retrotransposons and
ERVs (19). Nevertheless, 20 candidates contained a hit
to the ‘TLV_coat’” Pfam model representing part of an
env domain.

To assess whether these 88 putative full-length
representatives are supported by a reference dataset, we
compared the positions of these insertions with the LTR
retrotransposon annotation from the Ensembl release 54
database (34), containing RepeatMasker-based matches to
Repbase LTR retrotransposon sequences. The compari-
son was done by counting the number of Ensembl LTR
features overlapping with each putative full-length LTR
retrotransposon. As LTR and internal sequences for a
specific LTR retrotransposon are stored as separate
entities in Repbase, at least three hits per recognized
full-length representative are expected: one for each
LTR match and at least one for the internal region.
Indeed, 87 of 88 representatives overlap with three or
more Ensembl hits, spanning the whole predicted candi-
date. The majority (53 of 87) overlap with exactly three
Ensembl hits. However, for 34 candidates, the correspond-
ing hits are apparently not stored in Ensembl as continu-
ous features, but instead fragmented into several
individual feature entries (see example in Figure 6). The
internal region of the remaining one of the 8§88
representatives overlaps with two long Ensembl matches
with no corresponding LTR matches.

In turn, we checked whether features from Ensembl
likely to be full-length LTR retrotransposons in the
mouse genome overlap with the 88 putative full-length
insertions. Autonomous (and thus full-length) retroviral-
like elements in the mouse genome are commonly consid-
ered to be of length between 6000 bp and 9000 bp (35).
In the Ensembl release 54 database, there are 133
sequence-based LTR retrotransposon entries of length at
least 5000 bp on chromosome 4 of M. musculus. The
minimum length was decreased by 1000 bp to compensate
for the lengths of LTRs stored separately from the internal
regions in Ensembl.

Of these 133 Ensembl features, 67 overlap with one of
the 88 putative full-length representatives, supporting
their full-length status and leaving 66 features with no
corresponding LTRdigest candidate. Thirty-five of these
represent incomplete LTR retrotransposons which
contain protein domain hits but do not show the
required full set of features. That is, either a gag,
protease, RT or integrase function is missing. Twenty-
three others were dropped due to the strict LT Rharvest
‘overlap’ option which was set to disregard candidates
overlapping with each other (e.g. nested insertions).

As for other internal features in the 88 putative full-
length candidates, PBSs complementary to seven host
tRNAs were present in 39 of the 88 candidates (see
Supplementary Data 1, Table F2). PBS lengths varied
across a range of 11-18 bp with a median of 15bp. The
PBS offset from the 5-LTR end ranged from 0bp to
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5bp with a median of 4bp. Of 88 putative full-length
candidates (94%), 83 contained PPT regions satisfying
the default model. They are of length between 10 bp and
30 bp (median 17 bp). Offsets from the 3’-LTR start varied
across a range of 0-28 bp with a median of 2 bp.

Family classification results for the D. melanogaster
genome

The classification process (see Materials and Methods
section) does not use reference data, but relies strictly on
the de novo annotation results generated by LTRdigest.
Candidates are grouped according to the clustering
results of internal features. Out of 713 LTR retrotrans-
poson candidates, 535 were assigned to 79 candidate
groups. Of the 178 candidates which were not assigned
to any group, 77 were discarded because they did not
contain any protein domain hits. Twenty-three remained
singlets for all features during the sequence clustering step
and therefore were excluded from further analyses.
Another 78 candidates could not be unambiguously
assigned to a group and were excluded as well. From the
79 groups of 535 candidates altogether, 17 groups contain-
ing only one member were discarded, as were their
member candidates. This step resulted in 62 final candi-
date groups, containing 518 candidates altogether. From
these 518 candidates, 376 were selected as good represen-
tative sequences (see Materials and Methods section),
ready to be used for comparison to a reference data set.

To evaluate if the candidate groups detected in the last
step represent known LTR retrotransposon families in
D. melanogaster and to assess how well the current refer-
ence sequences could be reproduced, the sequences of all
representative candidates in the groups were compared
with a reference set of known Drosophila transposon
sequences using BLAST (36). The reference set was
obtained from the FlyBase database and contains one rep-
resentative full-length sequence per known TE family.
From this reference set, only the 49 LTR retrotransposons
marked as complete were considered (see Supplementary
Data 1). Additionally, the global sequence identity was
calculated for all members of a group in comparison
to the single reference sequence resulting in the best
BLAST match. This was done using the needle tool from
the EMBOSS suite (37).

In this sequence-based comparison, representative
sequences from 41 out of these 62 candidate groups
matched to the reference set with high global sequence
identity (82.2% to 100%, median 99.5%, see Table 2).
We considered a group matched to a reference sequence
if a global alignment of at least one sequence in the group
exceeded a sequence identity threshold of 80%. Though
no such match was found in the reference dataset for the
sequences of groups Dmel-17 and Dmel-37, a subsequent
search in the Repbase database (7) using the CENSOR
tool (38) revealed high-quality matches of these sequences
to the only recently described Bica (39) and Chimpo
element sequences which were not present in the FlyBase
reference set in the first place. Group Dmel-36 was con-
sidered to represent the accord?2 family although an initial
global alignment with its reference sequence did not reach
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Table 2. Candidate groups of LTR retrotransposons in the D. melanogaster genome with high similarity (at least 80%) to a reference sequence

of a known family

Group No. of members Candidate groups Reference

PBS PPT Domains Identity (%) Family
Dmel-0 24 Arg-TCG aaaaaagaggggagg PR-RT-INT 99.9 blood
Dmel-1 64 - — PR-INT 99.9 roo
Dmel-2 2 Leu-CAA - RT-INT 99.4 mdg3
Dmel-3 17 Lys-TTT gaggggggaggag RT-INT 100.0 opus
Dmel-4 21 Met-CAT - INT-RT 99.9 copia
Dmel-5 19 Ser-AGA aagggaaggggag PR-RT-INT 99.2 297
Dmel-6 13 Arg-TCG aaaaggagggaga PR-RT-INT 98.7 mdgl
Dmel-7 2 - gaggagggaa PR-RT-INT 99.2 springer
Dmel-8 7 Ile-AAT - PR-INT 99.6 diver
Dmel-9 9 Lys-TTT aagaggggaggag RT-INT 100.0 HMS-Beagle
Dmel-10 10 Ser-AGA gggeggooageag PR-RT-INT 99.9 Tirant
Dmel-11 4 Arg-TCG aaaaggagggaga PR-RT-INT 100.0 Tabor
Dmel-12 7 Ser-AGA aaaggatggggaag PR-RT-INT 100.0 Quasimodo
Dmel-13 9 - - PR-RT-INT 99.8 Transpac
Dmel-14 13 - - PR-RT-INT 99.6 flea
Dmel-15 2 Leu-CAA — INT 98.3 invader4
Dmel-16 8 - agaaggggaggag PR-RT-INT 99.7 Burdock
Dmel-17 5 Leu-CAA aagaggaagagcatgagagaggggg PR-RT-INT 99.0 Bica
Dmel-19 3 - ggggaggag PR-RT-INT 97.0 gypsy4
Dmel-20 3 Leu-CAA - RT-INT 97.3 invader2
Dmel-21 3 Tyr-GTA aaggggggggagaa RT-PR-INT 99.5 Max-element
Dmel-23 3 Tyr-GTA — RT-PR-INT 82.2 GATE
Dmel-24 3 - - RT-INT 99.6 invader3
Dmel-26 3 Leu-CAA — INT 99.1 invaderl
Dmel-27 6 - - PR-INT 100.0 3S18
Dmel-30 3 Arg-TCG aaaaagggagg PR-RT-INT 99.0 Stalker4
Dmel-32 4 Ser-AGA aaagggagggaag PR-RT-INT 100.0 rover
Dmel-33 3 Trp-CCA ggggggagea INT 95.9 diver2
Dmel-34 3 — gaggggggag PR-RT-INT 99.9 gypsy
Dmel-36 2 - - RT-INT 100.0 accord2
Dmel-37 2 Arg-TCT ggaggggeag RT-INT 99.0 Chimpo
Dmel-38 7 Ser-AGA aagggaagggaag PR-RT-INT 98.9 17.6
Dmel-40 17 Arg-TCG aaaaggagggaga PR-RT-INT 100.0 412
Dmel-43 6 Cys-GCA aaaaagggagg PR-RT-INT 99.3 Stalker2
Dmel-44 4 Ser-AGA gagaatggaaaaaa PR-RT-INT 98.7 Idefix
Dmel-45 2 - - PR-RT-INT 96.1 gypsy6
Dmel-49 3 Lys-TTT aagaggggaggag RT-INT 99.9 HMS-Beagle2
Dmel-52 2 - ggggegggaggag RT-INT 85.8 ZAM
Dmel-54 3 Arg-TCG aaaaagggagg PR-RT-INT 99.6 Stalker4
Dmel-59 2 - - PR-RT-INT 91.6 blood
Dmel-60 2 — ggggaggag PR-RT-INT 98.7 gypsy4

The left side of the table gives the name of each group, along with their number of representatives and their features. The right side shows the
D. melanogaster family determined by matching representative sequences against a set of reference sequences. The last column gives the similarity
value of the best global alignment between the reference sequence and the representative sequences.

the 80% threshold because the reference sequence is
apparently given on the opposite strand. Comparing the
sequences on group Dmel-36 with the reverse complement
of the accord? sequence led to correct results. The
orientation was confirmed by submitting the reference
sequence to CENSOR, which also indicated a perfect
complementary match.

In three cases, pairs of these 41 candidate groups were
matched to the same known LTR retrotransposon family
because they were separated due to slight differences in
LTR (Dmel-0, Dmel-59), PBS (Dmel-30, Dmel-54) or
gypsy domain clustering (Dmel-19, Dmel-60).

The remaining sequences from 21 of 62 groups (not
listed in Table 2) did not show any satisfactory hit to
the reference sets (see Supplementary Data 1, Table C

for more information). Most of these 21 groups are
small groups, likely created by repetitive sequences from
regions with nested (non-LTR) transposons. These gave
rise to pHMM protein domain matches (mostly very few
per candidate) and therefore led to grouping of the respec-
tive candidates. In some groups, the sequences in the
groups were not complete but subject to internal deletions
or insertions (e.g. Dmel-29 or Dmel-57, which represent
incomplete members of the Circe and micropia families).

Of the 49 known LTR retrotransposon families
marked as ‘complete’ in the D. melanogaster reference
sequence file, 12 were not matching any sequence for
any candidate family and thus remain unaccounted for
(see Supplementary Data 1, Table D). A BLAST search
for their reference sequences in the initial candidates



produced by LTRharvest revealed that the only full-length
hits for these reference sequences were found in candidates
which were discarded because they either

(1) could not unambiguously be assigned to a group, or
(i) were singlets for all features during the feature clus-
tering process, or
(iii) were the only members of their respective groups, or
(iv) were not recognized in any of the initial candidates
given as input to LTRdigest.

DISCUSSION

This article presents LT Rdigest, a software tool for flexible
identification of internal features inside LTR retrotrans-
poson or ERV sequences given in a standardized format.
LTRdigest utilizes a variety of sequence analysis methods,
some of which are already successfully used in the context
of LTR retrotransposon detection.

For example, LTR_FINDER (9) uses local alignments
between tRNA sequences and LTR retrotransposon
sequences to detect possible PBSs. The implementation
of the PBS detection in LTRdigest, however, improves
on the LTR_FINDER implementation in terms of flexibil-
ity. For example, it allows fine tuning of Smith—Waterman
alignment scores, binding specificity and locality of the
PBS prediction. In LTR_FINDER, only a minimal align-
ment length and a tRNA library file can be specified.
Unfortunately, a direct quality comparison of feature
prediction results from LTRdigest and LTR_FINDER is
difficult because ecither the parameters of the prediction
methods implemented in LTR_FINDER are too different
in nature to produce equivalent conditions, or configura-
tion of the necessary parameters is not possible. This
cannot be compensated for by adjusting LTRdigest
parameters because, in the case of LTR _FINDER, the
parameters used (like Smith-Waterman alignment
scores, distance constraints, etc.) are not documented
and the source code is not openly available.

The RetroTector software (20), primarily intended for
the identification of ERVs in genomic sequences, includes
search capabilities for PPT, PBS and domain motifs.
It also attempts to reconstruct ORFs for the gag and pol
genes, something not implemented in LT Rdigest yet. The
TE model used in RetroTector, however, is relatively fixed
and relies on a database of known motif sequences, thus
limiting its use in de novo annotation of genomes for which
such a database has not been built yet.

Although LTRdigest and LTR_Rho (8) both use
HMMER as a protein domain scanning engine, a compar-
ison is difficult: First, LTRdigest post-processes the
pHMM hits by a match chaining step to detect domains
even if they span mutations breaking open reading frames.
Secondly, LTR_Rho does not output a detected protein
domain, but uses it solely to filter out candidates during
the detection process. That is, there is no separate domain
annotation component in L7R_Rho to which we could
compare LTRdigest. Finally, detection of PPT or PBS
features is not implemented in LTR_Rho and therefore
the prediction performance cannot be compared for
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these features. Protein domain detection in LT Rdigest is
implemented in a way similar to LTR_Rho (8), using
pHMDMs in a standardized format, like those available
in the Pfam database. Unlike LTR Rho, the domain
detection in LTRdigest is not solely used for filtering
purposes but for annotation as well, employing match
chaining to obtain the most complete protein domain
match possible. This emphasizes the purpose of
LTRdigest as an annotation tool primarily generating
further information about LTR retrotransposon
sequences without being tied to a specific problem,
making it usable in a wide variety of application areas.

The purpose of LT Rdigest as an annotation tool is also
apparent from the fact that the feature detection process is
separated from the candidate prediction itself. For
example, in LTR_FINDER both are intertwined in a
way that prevents separate use. The separation makes
LTRdigest usable on any given dataset of LTR
retrotransposon candidates as long as they are sufficiently
described by their LTR positions in GFF3 format, a
standard format for genome annotations. Furthermore,
unlike for LTR FINDER, feature detection in
LTRdigest is not tied to fixed filters, allowing a flexible
combination of LTRdigest with other prediction tools
and the integration into annotation and filtering pipelines.
To simplify this, an open, object-oriented API facilitates
integration of feature detection capabilities into custom C
software built upon the GenomeTools toolkit. LT Rdigest
also outputs its results in a variety of formats. The GFF3
output can be used for computational post-processing or
visualization (e.g. in a genome browser), while the tab-
separated output file is readable in any common
spreadsheet software. Detailed sequence and alignment
output allows for sequence-based analyses of the results.

Another advantage of LTRdigest over existing tools
is that the time-consuming feature identification process
can run in parallel, if desired. As candidate sets are essen-
tially GFF3 text files, it is possible to partition them
(e.g. according to appropriate boundaries) and distribute
the corresponding computational tasks on a compute
cluster. In addition, a concurrent search for multiple
protein domain models can be run simultaneously by
multiple CPU cores on each individual cluster node.
Therefore, the use of LT Rdigest for feature identification
is expected to scale well for growing LTR retrotransposon
candidate and protein domain model sets.

LTRdigest is useful in a variety of applications. In a
simple use case not presented here, the presence of
protein domains was used to filter an LTR retrotrans-
poson candidate set from the work of Ellinghaus et al.
(12) for the D. melanogaster release 3 genome sequence
by discarding every candidate not showing any protein
domain, similar to an existing method used by Rho
et al. (8). Using this simple filtering approach, the
specificity of LT Rharvest predictions could be increased
from 59% to 75% with no loss of sensitivity. That is,
out of 506 predicted candidates, the number of candidates
not matching to a reference database of known full-length
insertions (40) was decreased from 207 to 101, without
removing any of the true positives (see Supplementary
Data 1, Table G). Several other filtering conditions
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based on the presence of specific feature combinations
were evaluated, but did not result in significant specificity
improvement.

In another use case, this article shows that LT Rdigest is
suitable to identify (near) full-length ERV insertions in the
chromosome 4 sequence of M. musculus. The internal
features identified by LTRdigest, like PBS, PPT and
protein domains, are not visible in the corresponding
Ensembl features originating from sequence based hits
to the Repbase database. The pHMM search step
identified a fine-grained set of protein domain hits in the
M. musculus candidates. Not only hits to the core domains
are present, but also hits to gag sequences and small con-
necting domains between several functional units, e.g.
between subdomains of the RT and integrase functions.
A reason for this may be that the application of LT Rdigest
to mammalian ERVs benefits from the availability of
many retroviral RT or integrase sequences (e.g. from
HIV) for pHMM building, resulting in a high sensitivity
of the protein domain pHMMs available in the Pfam
database.

In the use case of D. melanogaster release 5.8 LTR
retrotransposon predictions, the LTRharvest parameters
were adjusted to report full-length and truncated
insertions, as long as they contain both LTRs. It is
useful to include truncated insertions in the pipeline as
these insertions can support identification of families
with few full-length copies present in the genome. In
release 5.8 of the D. melanogaster genome sequence, 713
candidates were reported, while 1321 LTR elements were
detected in release 4 (41). Due to the ‘overlap = no’
parameter setting, most of the 327 nested insertions of
release 4 were not identified by LT Rharvest. In addition,
an unknown percentage of the remaining 994 elements
are either solo LTRs or copies showing deletions in one
or both LTRs, effectively preventing them from being
detected by LTRharvest. Thus, a direct comparison of
both data sets does not make sense.

In addition, we described an automated classification
process, which shows good results for the D. melanogaster
test case. A large number of known LTR retrotransposon
families could be reproduced with several representative
full-length copies. The representative sequences show
high similarity to the complete reference sequences from
FlyBase, indicating that reconstruction of element families
from internal feature sequences is feasible at least in
genomes with evolutionary rather young LTR retro-
transposons. False positives, that is, groups of candidates
classified as a potential family of LTR retrotransposons
not matching any known reference, mostly contain very
few feature hits, often only for single protein domains
like RT or zinc knuckle domains which are also found
in other kinds of retrotransposons. Matches of that kind
occasionally result in misclassification of such candidates
as LTR retrotransposons and subsequent grouping on the
basis of the similarity of such features alone. Also,
candidates from highly nested regions (e.g. in
heterochromatin) with few good internal pHMM hits
can lead to grouping of unrelated candidates. However,
such groups can easily be identified by examination of a
multiple alignment of all sequences in the group.

While this automated classification is neither able
nor intended to completely replace careful examination
by a human expert, it supports analysis by biologically
meaningful preparation of potential candidate families
for later examination. The classification approach as
described in this article is not intended to assign a
family to each and every candidate regardless of its com-
pleteness. Instead, it creates groups of candidates linked
by combined feature sequence similarity, possibly in
various stages of evolutionary rearrangement. This pre-
liminary classification information can then be used as a
starting point to determine a most complete representative
for a given group using the given annotation for further
investigation.

As for future improvements of the LT Rdigest software,
it will certainly be useful to extend the protein domain
detection to derive a possible open reading frame from
the protein hits, which can then be annotated as a
CDS or transposable_element_gene SO entity in the
GFF3 output. This functionality would widen the model
of internal polyprotein genes from single domain hits to
whole translational units.

CONCLUSION

While fine-grained annotation of genomic features is
common in the context of gene prediction, which aims
at precisely determining the intron—exon boundaries,
most information about LTR retrotransposon insertions
is still limited to broad-scale sequence-based matches.
In summary, our software will be helpful to improve this
data by annotating LTR retrotransposons and ERVs,
especially in the context of de novo identification
projects. In such projects, this annotation data will
prove valuable in separating full-length copies from
truncated insertions and other retrotransposons. It also
facilitates classification of LTR retrotransposons into
families. The results can then be used for further
analyses, e.g. for building a reference sequence library or
for phylogenetic studies. The feature identification process
utilizes parallelization and requires little memory,
facilitating analyses of large candidate sets, e.g. from
mammalian genomes. Results of exemplary applications
on the M. musculus and D. melanogaster genomes show
that both the software and the methods presented here are
suitable for such applications.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors would like to thank Jan Sellmann for large-
scale testing of LTRdigest and providing valuable bug
reports as well as helpful suggestions for usability
improvement.



FUNDING

Funding

for open access charge: Center for

Bioinformatics, University of Hamburg, Bundesstrasse
43, 20146 Hamburg, Germany.

Conflict of interest statement. None declared.

REFERENCES

1.

2.

W

20.

21.

Biémont,C. and Vieira,C. (2006) Junk DNA as an evolutionary
force. Nature, 443, 521-524.

Finnegan,D.J. (1989) Eukaryotic transposable elements and genome
evolution. Trends Genet., 5, 103—107.

.Jern,P. and Coffin,J.M. (2008) Effects of retroviruses on host

genome function. Annu. Rev. Genet., 42, 709-732.

. Maksakova,l.A., Mager,D.L. and Reiss,D. (2008) Keeping active

endogenous retroviral-like elements in check: the epigenetic
perspective. Cell Mol. Life Sci., 65, 3329-3347.

. Slotkin,R.K. and Martienssen,R. (2007) Transposable elements

and the epigenetic regulation of the genome. Nat. Rev. Genet., 8,
272-285.

. Bergman,C.M. and Quesneville,H. (2007) Discovering and detecting

transposable elements in genome sequences. Brief. Bioinform., 8,
382-392.

.Jurka,J., Kapitonov,V.V., Pavlicek,A., Klonowski,P., Kohany,O.

and Walichiewicz,J. (2005) Repbase update, a database of
eukaryotic repetitive elements. Cytogenet. Genome Res., 110,
462-467.

. Rho,M., Choi,J.-H., Kim,S., Lynch,M. and Tang,H. (2007)

De novo identification of LTR retrotransposons in eukaryotic
genomes. BMC Genomics, 8, 90.

. Xu,Z. and Wang,H. (2007) LTR_FINDER: an efficient tool for

the prediction of full-length LTR retrotransposons. Nucleic Acids
Res., 35, W265-W268.

. McCarthy,E.M. and McDonald,J.F. (2003) LTR_STRUC: a novel

search and identification program for LTR retrotransposons.
Bioinformatics, 19, 362-367.

. Kalyanaraman,A. and Aluru,S. (2006) Efficient algorithms and

software for detection of full-length LTR retrotransposons.
J. Bioinform. Comput. Biol., 4, 197-216.

. Ellinghaus,D., Kurtz,S. and Willhoeft,U. (2008) LT Rharvest,

an efficient and flexible software for de novo detection of LTR
retrotransposons. BMC Bioinformatics, 9, 18.

. Vogt,P.K. (1997) Retroviral virions and genomes. In Coffin,J.M.,

Hughes,S.H. and Varmus,H.E. (eds), Retroviruses. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, New York.

. Wilhelm,M. and Wilhelm,F.X. (2001) Reverse transcription of

retroviruses and LTR retrotransposons. Cell Mol. Life. Sci., 58,
1246-1262.

. Wilhelm,M., Uzun,O., Mules,E.H., Gabriel,A. and Wilhelm,F.X.

(2001) Polypurine tract formation by Tyl RNase H. J. Biol. Chem.,
276, 47695-47701.

. Wilhelm,M., Heyman,T., Boutabout,M. and Wilhelm,F.X. (1999)

A sequence immediately upstream of the plus-strand primer is
essential for plus-strand DNA synthesis of the Saccharomyces
cerevisiae Tyl retrotransposon. Nucleic Acids Res., 27, 4547-4552.

. Marquet,R., Isel,C., Ehresmann,C. and Ehresmann,B. (1995)

tRNAs as primer of reverse transcriptases. Biochimie, 77, 113-124.

. Mak,J. and Kleiman,L. (1997) Primer tRNAs for reverse

transcription. J. Virol., 71, 8087-8095.

. Havecker,E.R., Gao,X. and Voytas,D.F. (2004) The diversity

of LTR retrotransposons. Genome Biol., 5, 225.

Sperber,G.0O., Airola,T., Jern,P. and Blomberg,J. (2007) Automated
recognition of retroviral sequences in genomic data—RetroTector.
Nucleic Acids Res., 35, 4964-4976.

Feschotte,C., Keswani,U., Ranganathan,N., Guibotsy,M.L. and
Levine,D. (2009) Exploring repetitive DNA landscapes using
REP-CLASS, a tool that automates the classification of

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

38.

39.

40.

41.

42.

Nucleic Acids Research, 2009, Vol.37, No. 21 7013

transposable elements in eukaryotic genomes. Genome Biol. Evol.,
2009, 205-220.

Abrusan,G., Grundmann,N., DeMester,L.. and Makalowski,W.
(2009) TEclass—a tool for automated classification of

unknown eukaryotic transposable elements. Bioinformatics, 25,
1329-1330.

Lowe, T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for
improved detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res., 25, 955-964.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195-197.

Durbin,R., Eddy,S.R., Krogh,A. and Mitchison,G. (2006)
Biological Sequence Analysis — Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, Cambridge.

Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, 14,
755-763.

Finn,R.D., Tate,J., Mistry,J., Coggill,P.C., Sammut,S.J., Hotz,H.-
R., Ceric,G., Forslund,K., Eddy,S.R., Sonnhammer,E.L.L. et al.
(2008) The Pfam protein families database. Nucleic Acids Res., 36,
D281-D288.

Gremme,G., Brendel,V., Sparks,M.E. and Kurtz,S. (2005)
Engineering a software tool for gene structure prediction in
higher organisms. Inf. Softw. Technol., 47, 965-978.

Eilbeck,K., Lewis,S.E., Mungall,C.J., Yandell,M., Stein,L.,
Durbin,R. and Ashburner,M. (2005) The sequence ontology: a tool
for the unification of genome annotations. Genome Biol., 6, R44.
Tweedie,S., Ashburner,M., Falls,K., Leyland,P., McQuilton,P.,
Marygold,S., Millburn,G., Osumi-Sutherland,D., Schroeder,A.,
Seal,R. et al. (2009) Flybase: enhancing Drosophila gene ontology
annotations. Nucleic Acids Res., 37, D555-D559.

Chan,P.P. and Lowe,T.M. (2009) GtRNAdb: a database of transfer
RNA genes detected in genomic sequence. Nucleic Acids Res., 37,
D93-D97.

Wicker,T., Sabot,F., Hua-Van,A., Bennetzen,J.L., Capy,P.,
Chalhoub,B., Flavell,A., Leroy,P., Morgante,M. et al. (2007)

A unified classification system for eukaryotic transposable elements.
Nat. Rev. Genet., 8, 973-982.

Llorens,C., Futami,R., Bezemer,D. and Moya,A. (2008)

The Gypsy Database (GyDB) of mobile genetic elements.

Nucleic Acids Res., 36, D38-D46.

Hubbard, T.J.P., Aken,B.L., Ayling,S., Ballester,B., Beal.K.,
Bragin,E., Brent,S., Chen,Y., Clapham,P., Clarke,L. et al. (2009)
Ensembl 2009. Nucleic Acids Res., 37, D690-D697.
McCarthy,E.M. and McDonald,J.F. (2004) Long terminal repeat
retrotransposons of Mus musculus. Genome Biol., 5, R14.
Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.]J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215,
403-410.

. Rice,P., Longden,I. and Bleasby,A. (2000) EMBOSS: the

European Molecular Biology Open Software Suite. Trends Genet.,
16, 276-277.

Kohany,O., Gentles,A.J., Hankus,L. and Jurka,J. (2006)
Annotation, submission and screening of repetitive elements

in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, 7,
474.

Bartolome,C., Bello,X. and Maside,X. (2009) Widespread
evidence for horizontal transfer of transposable elements across
Drosophila genomes. Genome Biol., 10, R22.

Kaminker,J.S., Bergman,C.M., Kronmiller,B., Carlson,J.,
Svirskas,R., Patel,S., Frise,E., Wheeler,D.A., Lewis,S.E.,
Rubin,G.M. et al. (2002) The transposable elements of the
Drosophila melanogaster euchromatin: a genomics perspective.
Genome Biol., 3, RESEARCHO0084.

Bergman,C.M., Quesneville,H., Anxolabéhére,D. and
Ashburner,M. (2006) Recurrent insertion and duplication
generate networks of transposable element sequences in the
Drosophila melanogaster genome. Genome Biol., 7, R112.
Steinbiss,S., Gremme,G., Schirfer,C., Mader,M. and Kurtz,S.
(2009) AnnotationSketch: a genome annotation drawing library.
Bioinformatics, 25, 533-534.



